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unmodified and modified components. An approx- 
imate fit to this curve is then obtained by a proper 
choice of the parameters q and b in equation (9). When 
only unmodified scattering is being considered, the 
best fit is usually obtained with q=0.0,  but when the 
interest is in both the unmodified and modified intensi- 
ties, it is necessary to use a value ofq other than zero. An 
exact fit is of course not to be expected, but if the depart- 
ures are small and equally positive and negative, the 
errors are largely cancelled by the averaging which is 
involved. Suitable values of q and b having been deter- 
mined, the values of Q(20,q,b) are obtained by inter- 
polation from Table 1. With the use of equation (10), 
the ratio I(2)/I(1) can be plotted over the desired range 
of 20. 

As an illustration of the magnitude of second order 
scattering, we can take the example of vitreous SiO2 

with Rh Ka radiation and an experimental technique 
which measures only the unmodified intensity (Warren 
& Mavel, 1965). From equation (8) we obtain for 
1(2)/1(1) a value of about 0.08 in the range 20=90 ° to 
20= 180 ° . Except for samples with high absorption 
coefficients, the second order scattering is in general 
large enough to require a correction. 

This work was done in part at the Computation 
Center at the Massachusetts Institute of Technology, 
Cambridge. One of us (RLM) is a Raytheon Graduate 
Program Member at M.I.T. 
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Previous theoretical work on diffraction by chrysotile has not revealed the particular regions of the 
fibrils from which particular diffraction maxima originate. Difficulties in localizing these regions are 
overcome by a Fourier-transform method, and the results are applied to evaluating electron screening 
functions across the width of such fibrils on the basis of simple kinematical theory. The results show 
that under appropriate conditions electron micrographs of chrysotile fibrils may be expected to simulate 
hollow tubes even though the centres of the fibrils are filled either with amorphous material or with 
oriented ribbons of serpentine material. 

Introduction 

Electron microscopy provided the first evidence that 
chrysotile has a tubular structure (Turkevitch & Hillier, 
1949; Bates, Sand & Mink, 1950). The evidence for 
this conclusion was based on the fact that electron 
microscope images of single chrysotile fibres frequently 
showed a central light band running along the length 
of the fibre with a darker band at each side. The 

* Present address: Department of Geology & Mineralogy, 
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Fig. 1. The var iat ion in mater ial  thickness across a section of  a 
thick-walled hol low cylinder.  

boundaries between the light and dark bands are often 
remarkably sharp. This appearance has always been 
attributed to shielding of the electron beam by the 
fibre, this shielding being assumed to be a function of 
the material thickness traversed by the beam. Fig. 1, 
showing the variations in thickness across the section 
of a hollow cylinder, was used to demonstrate the 
theory by Noll & Kircher (1951). These workers ex- 
tended the observations to stereoscopic electron micro- 
graphs of synthetic chrysotile, which gave a particularly 
convincing appearance of hollowness. Subsequent 
analysis of X-ray diffraction patterns of chrysotile 
showed these to be explicable in terms of cylindrically 
curved layers with a radius of the same order as that 
of the tubes deduced from electron microscopy, the 
layers being stacked together in numbers corresponding 
to the apparent wall-thicknesses of such tubes (Whit- 
taker, 1953, 1956, 1957; Jagodzinski & Kunze, 1954; 
Jagodzinski, 1961). It has also been shown (Whittaker, 
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1963) that in high resolution electron diffraction it is 
possible to observe a fine structure within the diffrac- 
tion maxima which corresponds to the expected inter- 
ference between rays diffracted from the opposite 
walls of a tube with dimensions in accordance with 
the X-ray and electron microscope observations. 

The fact which has been difficult to reconcile with 
the above observations is the density of chrysotile. 
This was shown by Pundsack (1956), and also by Kalou- 
sek & Muttart  (1957), to be too high to admit the 
presence of the hollow tubes that had been postulated. 
More recent work by Pundsack (1961) and by Hug- 
gins & Shell (1965) has shown somewhat lower den- 
sities, which admit of a proportion of the postulated 
voids being present in some specimens, but nevertheless 
it appears likely that many chrysotile fibrils cannot be 
hollow. It has therefore been suggested (Whittaker, 
1957) that the major part of the substance of chrysotile 
lies in tube walls as indicated by the diffraction evi- 
dence, but that the centres of these tubes are largely 
filled either by amorphous material or curved laths 
of the chrysotile structure. The appearance in the elec- 
tron microscope then has to be explained either as a 
result of diffraction contrast between the walls and the 
infilling material, or as due to a tendency to select the 
less completely filled tubes in the preparation of 
specimens for electron microscopy. It is the purpose 
of the present paper to examine the possibility that 
diffraction contrast could arise, in a filled chrysotile 
tube, which would be of an appropriate kind and 
magnitude to explain the appearance in the electron 
microscope. 

The polygonal approximation 

The theoretical treatments of diffraction by cylindrical 
lattices which have been published hitherto (Jagod- 
zinski & Kunze, 1954; Whittaker, 1954, 1955) have 
considered the total diffraction effects, but have not 
sought to identify particular regions of the lattice 
as giving rise to particular diffraction maxima. In order 
to evaluate diffraction contrast effects such an identi- 
fication must be made. 

The similarity of the diffraction pattern to a rotation 
photograph of a (suitably disordered) single crystal 
suggests that it should be possible to regard any parti- 
cular diffraction maximum as arising from that part 
of the cylindrical lattice which has the same orientation 
as such a rotating crystal would have when it was pro- 
ducing a corresponding diffraction maximum. This is 
equivalent to the assumption that the cylindrical lattice 
may be approximated by a polygonal lattice, and that 
diffraction from any one side of such a polygonal lat- 
tice may be regarded as independent of that from the 
other sides. For simplicity, consider only the various 
orders of diffraction from the radial spacing, and sup- 
pose the polygon to be such that successive sides are 
in the appropriate Bragg positions to give rise to the 
successive orders from this spacing, as shown in Fig. 2. 

This approximation would appear to be a very artificial 
one, and would be expected to give a gross over- 
estimate of the width (w) of the region of the lattice 
which is involved in the production of each diffraction 
maximum. It should therefore lead to an upper limit 
for w. 

For the short wavelengths appropriate to electron 
diffraction we may put 

On =h2/2d 

so that the angle between successive sides of the poly- 
gon is given by 

On+l- On = 2/2d. 
Hence w = 2R sin ½(0n+l - 0n) 

= R2/Zd. 

Thus for a wavelength of 0.04 A and a fibre diameter of 
about 300 A, w is of the order of 0.4 A. As this is a 
very small fraction of the lattice dimension, the con- 
cept of a reflexion from so narrow a strip of lattice 
plane is obviously meaningless, and is irreconcilable 
with the fact that the electron diffraction pattern is 
virtually identical with an X-ray diffraction pattern 
involving a value of 2 (and therefore of w) about 40 
times as big. 

It must be concluded that the polygonal approxima- 
tion is inadequate for the present purpose. 

The Fourier transform approach 

An alternative approach, to localize the regions of the 
circular lattice which give rise to particular diffraction 
maxima, is to divide the circular lattice into an arbi- 
trary number of sectors, and to evaluate the contribu- 
tion of each to the diffraction maximum. The choice 
of the number (and angular width) of the sectors will 
justify itself provided that the analysis shows the 
contributing region to include more than one sector. 

In order to avoid complex amplitudes it is desirable 
to associate each sector of the circular lattice with its 

1 
Fig. 2. Diffraction from a polygonal approximation to a cylin- 

drical lattice, w is the maximum width of the region giving 
rise to a diffraction maximum if the two rays shown cor- 
respond to the 1st and 2nd orders of diffraction from the 
radial spacing. 
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centrosymmetrically related counterpart in a double 
sector as shown in Fig. 3(a). The Fourier transform of 
this is clearly the convolution of the transforms of the 
circular lattice [Fig.3(b)] and the double sector aper- 
ture [Fig. 3(c)]. The general form of the transform of 
Fig. 3(c) was visualized by means of optical diffraction. 

[(l(It  3 ))II) 
( a )  

(c) 
Fig. 3. (a) A double sector of the cross-section of a set of 

concentric circles. (b) The set of circles of which (a) forms 
a part. (c) A double sector aperture whose product with (b) 
gives (a). The Fourier transform of (a) is the convolution of 
the transform of (b) with that of (c). 
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Fig. 4. Schematic representation of the appearance of the opti- 
cal transform of Fig. 3(c). The lines correspond to loci of 
zero intensity, and the signs indicate the phases of the 
various fringes. 

It consists principally of a double St. Andrew's cross 
with a straight portion at the intersection as shown 
schematically in Fig.4, though there are also weak 
straight fringes at each side of the straight portion. For 
quantitative calculation the sectors were approximated 
by a pair of isosceles triangles, and central sections 
of the transform were calculated from the correspond- 
ing one-dimensional projections. These could always 
be resolved into sums and differences of triangular or 
trapezoidal functions which could be transformed by 
regarding them as convolutions of rectangular func- 
tions of appropriate breadths. Central sections of the 
transform were calculated at successive inclinations of 
1 ° in the vicinity of the arms of the cross, but at much 
wider intervals remote from these directions where the 
sections cut the fringes much less obliquely. One 
quadrant of the transform of a double triangle with 
vertex angle 10 ° is shown as a contour map in Fig. 5. 

The transform of the circular lattice of Fig. 3(b) is 
known from earlier work to consist of a set of con- 
centric circles of radii h/a, where a is the radial spacing 
of the circles of Fig. 3(b). The convolution of the trans- 
forms of Fig. 3(b) and 3(c) therefore requires that we 
place the origin of Fig. 5 at all points on such a set 
of circles, while maintaining the orientation of the 
transform. Thus in order to evaluate the convolution 
at O (Fig. 6), with the circle of radius R, we must sum 
the contributions from transforms centred at all points 
such as 0'. The contribution from the transform 
centred at O' is the value of this transform at O, i.e. at 

x' = R (cos ~0 - cos (0') y'  = R (sin ~0 - sin ~0') 

where x', y '  are the coordinates of O with respect to 
the rectangular axes of the transform at 0', and rp, rp' 
are the position angles of O, O' shown in Fig. 6. Because 
of the centrosymmetry of the transform the value at 
x', y' of the transform centred at O' is equal to the 
value at O' of the transform centred at O, i.e. the value 
at 

x = R (cos ~0'- cos ~0) y = R (sin ~ ' -  sin ~p) 

where x, y are the coordinates of O' with respect to the 
rectangular axes of the transform centred at O. There- 
fore the value of the convolution at any point such as 
O is equal to the integral of the transform centred at 
O along the circle with which it is to be convoluted. 

In accordance with this result the convolution was 
performed by graphical integration, and hence it was 
found that the transform of Fig. 3(a) consists of a set 
of concentric circles of radii h/a on the first of which 
the weight varies with azimuth in such a way as to 
indicate that the contributions to the first order radial 
refiexions from different 10 ° sectors of a cylindrical 
lattice are as shown in Fig. 7. 

From this result it may be concluded that, regardless 
of the sector angle used to analyse the situation, some- 
thing like 90% of the amplitude of the first order of 
the reflexion from the 7.3 A radial spacing originates 
within the three 10 ° sectors which most nearly lie in the 
'Bragg orientation'. For higher order reflexions the 
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strongly contributing regions are even more concen- 
trated; for the fifth order for example, 8070 of the 
amplitude occurs within a single 10 ° sector. 

Evaluation of the electron shielding function 

It may be concluded that in the region AB of the pro- 
jection of a quadrant of a fibril (Fig.8) the electron 
image will be shielded from almost the whole of the 
energy which is diffracted into the sharp reflexions, 
and also from that part of the energy which is diffracted 
into the diffuse reftexions from outside the region 
SQQ'S', which may for convenience be approximated 
by the stepped region SRR'S'. Conversely the region 
CA will be shielded only from the energy diffracted 
into diffuse reflections by SRR'S'. 

The problem of locating the region from which a 
diffuse, cross-grating, reflexion arises is rather different 
from that for a sharp reflexion. In projection a cylin- 
drically curved cross-grating has a variety of 'b-spac- 
ings' as shown in Fig. 9, and different regions may be 
considered to contribute to different parts of the tails 
of the reflexions according to the local value of the 
projection of the b-spacing. The slight delocalization 

o,.° o° -, os e~ "°"%,%% 

(a) (b) 

(c) (d) 
Fig. 10. The calculated shielding functions across the cross- 

sections of four fibrils with different ratios of internal to 
external radius: (a) 0"8, (b) 0.6, (c) 0.4 (d) 0"2. The full line 
is the shielding function for the empty cylinder. The broken 
line shows how this is modified if the tube is filled with 
amorphous material of the same density and composition 
as the walls. 

(a) (b) 

(c) (d) 

Fig. 11. Comparison of the shielding functions for empty tubes 
from Fig. 10 with the corresponding curves for material 
thickness penetrated by the beam (scaled to the same 
maxima). 

of the regions of the structure contributing to different 
parts of the tail (corresponding to the analysis in the 
preceding section) may be neglected, since it will merely 
tend to make the electron shielding due to the diffuse 
reflexions more uniform than it would otherwise be. 
Thus if we divide up the 'tails' of the diffuse reflexions 
into the parts contributed by each 10 ° sector at various 
radii in the fibre, we shall tend to exaggerate the 
shielding in the region CA, relative to AB, since we 
shall assume that the more intense heads of the diffuse 
reflexions contribute only to the shielding in CA. 

The appropriate intensities and intensity distribu- 
tions of the reflexions in electron diffraction were cal- 
culated approximately from the measured values in 
X-ray diffraction by use of a weighted mean ratio to 
allow for the different relationship to sin 0/2 of the 
scattering factors in electron diffraction as compared 
with those in X-ray diffraction as follows: 

Relative 

sin 0/2 fe/fx 
0-0"16 1"0 
0"16-0"29 0"85 
0"29-0"46 0'7 

> 0"46 0"5 

Due allowance was also made for differences in the 
geometric factors. All the reflexions within the range 
of Cu Kc~ radiation in X-ray diffraction were taken 
into account. Owing to the rapid fall-off of the scat- 
tering factor for electrons as a function of sin 0/2 it 
seems likely that the effects of the generally weak 
higher order reflexions will be negligible. In fact 5570 
of the diffracted intensity is accounted for by the three 
strongest sharp reflexions together with the two 
strongest diffuse reflexions. 

Shielding functions, giving relative values of electron 
intensity diffracted out of the direct beam as a function 
of position across a fibril, have been calculated for 
fibrils with a variety of ratios of internal diameter to 
external diameter, and are shown in Fig. 10. 

When one has derived the shielding functions for 
empty tubes, it is a simple matter to derive corres- 
ponding functions for tubes which are filled with 
amorphous material of the same composition and 
density as the walls. Such material would necessarily 
have the same mean diffracting power as the material 
of the walls, and its effect on the shielding function 
would be proportional to the thickness of it to be 
penetrated. The broken lines show the effect of adding 
such shielding to the curves of Fig. 10. 

Discussion 

In Fig. 11 the shielding functions which have been 
calculated for hollow tubes are compared with the 
corresponding curves for thickness penetrated (scaled 
to the same maximum values). From this it may be 
seen that in every case the diffraction contrast theory 
will make an empty tube look 'emptier' than would 
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(a) 

(b) 

Fig. 12. Electron micrographs of the same chrysotile fibrils in (a) light field illumination, and (b) dark field illumination. ( x 30,000). 

[To face p. 466 
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the thickness contrast theory. This is especially true 
of the local contrast at the inner edge of the tube wall, 
which is of the greatest importance for visual percep- 
tion of hollowness in a micrograph. 

From Fig. 10(d) it may be seen that a solid fibril, in 
which there is a thick tubular wall based on a cylindri- 
cal lattice, and a thin amorphous core of the same 
density, would certainly be expected to appear empty. 
For rather thinner walls [Fig. 10(c) and (b)] the shield- 
ing in the centre would be greater than in the walls, 
but there would still be a contrast effect at the boundary 
of wall and core which would tend to give a visual 
appearance of 'emptiness'. Only when the wall is very 
thin [Fig. 10(a)] does this effect tend to disappear. 
Furthermore, amorphous material would in fact tend 
to be less dense than the ordered material in the wall; 
it would therefore diffract rather less than has been 
assumed, and this would enhance the appearance of 
emptiness. 

No calculations have been made of the shielding 
function for tubes filled with oriented curved ribbons 
of chrysotile structure. But it is evident that these 
would diffract more than an amorphous filling if they 
were oriented with the layers approximately parallel 
to the beam so as to contribute to the sharp reflexions, 
but less than an amorphous filling if they were oriented 
so as not to contribute to the sharp reflexions. On a 
purely statistical basis the latter situation would occur 
the more frequently so that on this model one would 
expect a preponderance of fibrils which would appear 
more empty than would correspond to Fig. 10. 

The relevance of diffraction contrast in the electron 
microscopy ofchrysotile can be seen from a comparison 
of the dark field and light field electron micrographs 
in Fig. 12. Many fibrils which do not appear hollow 
in the light field photograph, as well as those which 
do, show contrast between the walls and the core on 
the dark field photograph. 

The central maximum which occurs in all the curves 
of Fig. 10 would correspond to a dark median line 

within the light core. Such an effect is shown on a 
micrograph by Huggins & Shell (1965), and the effect 
is visible on some of the fibrils in Fig. 12(a). 

It is evident that since the formation of diffraction 
contrast in an electron micrograph of chrysotile re- 
quires that the diffracted rays do not take part in the 
image formation, it will be diminished in circumstances 
which lead to resolution of the structural layers in the 
micrograph. It may therefore be significant that there 
is very little intensity contrast between walls and core 
in a micrograph of chrysotile (Dourmashkin, 1961) 
which just reveals fringes with a spacing of about 7 A 
in the regions corresponding to AB in Fig. 8. 

I wish to thank the Directors of Ferodo Limited for 
permission to publish this work; also Prof. H. Lipson 
for the use of his optical diffractometer to explore the 
optical transforms of sectors, Prof. C.A.Taylor for 
useful discussions of convolution methods, and Dr R. 
R.Dourmashkin for obtaining the dark field micro- 
graph. 
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